
A DevOps Approach
to Security Controls

Kenneth G. Hartman

© 2019 Kenneth G. Hartman – All Rights Reserved 1/21/2021 1

Presenter
Presentation Notes
Abstract:
The DevOps movement has made it possible for the leading companies to get their applications to market faster, with higher quality and reduced costs. DevOps is both a culture and a set of processes that enable development and operation teams to create, release, and manage applications following a Systems Development Life Cycle (SDLC) that is typically automated via Continuous Integration/Continuous Delivery (CI/CD) tooling. Now, DevOps principles have expanded beyond merely managing the application to managing the environment itself, giving rise to concepts such as Software Defined Networking and Infrastructure as Code. A security control is a testable countermeasure designed to mitigate a specific risk. Multiple, complementary controls create security capabilities. Of course, security engineers need to be baking security into applications throughout the SDLC by engaging with operations and development and hooking into the CI/CD toolchain. This presentation makes a corollary argument, advocating that security teams need to apply DevOps principles to how they implement security controls for virtually every compliance requirement, using a “Security Controls as Code” approach. This talk covers some tools that can support this paradigm but more importantly, some fundamental principles that can be applied immediately to the development, implementation, and enforcement of security controls.

1/21/2021

© 2019 Kenneth G. Hartman – All Rights Reserved

2

About
Me

“I help my clients earn and maintain
the trust of their customers”

Kenneth G. Hartman
• BS Electrical Engineering, Michigan Technological University
• MS Information Security Engineering, SANS Technology Institute
• Multiple Security Certifications: CISSP, GIAC Security Expert, etc.
• SANS Instructor – SEC545 Cloud Security Architecture & Operations

The content and opinions in this presentation are my own
and do not necessarily reflect the positions, strategies, or

opinions of any current or previous employer.

www.kennethghartman.com
@kennethghartman

2

Presenter
Presentation Notes
Kenneth G. Hartman - BIO
 Kenneth G. Hartman is a security engineering leader in Silicon Valley and teaches the “Security 545 -Cloud Security, Architecture, and Operations” Course for the SANS Institute. Ken has worked for a variety of Cloud Service Providers in Architecture, Engineering, Compliance, and Security Product Management roles. From 2002-2011, Ken helped launch and lead a company called Visonex into a profitable, nation-wide dialysis-specific electronic medical record using a software-as-a-service (SaaS) business model. Ken holds a BS Electrical Engineering from Michigan Technological University and a Masters Degree in Information Security Engineering from SANS Technology Institute. Ken has earned the CISSP, as well as multiple GIAC security certifications, including the GIAC Security Expert.

Objectives

• Advocate the use of DevOps Principles for Security Control
Implementation.

• Promote the use of Security Automation to achieve
Continuous Monitoring of all Security Controls.

• Use the organization’s CI/CD Toolchain to deploy and maintain
the Security Automation.

1/21/2021© Kenneth G. Hartman – All Rights Reserved | forensicate.cloud 3

Presenter
Presentation Notes
As an instructor for the SANS SEC545 “Cloud Security Architecture & Operations” Course, I have a great vantage point. I get to meet students from a wide variety of organizations…including large CSP’s like AWS, Salesforce, and Workday. I also get to meet organizations that are just starting their cloud journey and others that are transitioning to a DevOps software delivery model.

We know that DevOps is both a cultural shift and a set of tools and processes. The whole idea is to “shift security left” in the SDLC, by building security in throughout the whole SDLC. Well, the whole reason that we in security have always cared about the SDLC is so that we could inject our security controls into the process at the right time.

I think what is exciting about DevOps is that now the processes must be repeatable and defined for them to be automated. (Remember the Software Engineering Institutes Capability Maturity Model and the 5 levels of maturity? – Initial, repeatable, defined, managed, and optimizing).

The scary thing is that some organizations have multiple development teams each using their own processes. How is a security team able to keep their arms around all of this from a security assurance perspective? I believe that the answer lies in the use of security automation to enforce security controls.

In this talk, I will also advocate that the security controls be maintained using DevOps processes—including those security controls that are not traditionally viewed as integral to a software development initiative.

Problem Statement
Security Challenges are growing faster than Security Teams
• The ratios of Developers and Operators per Security Engineer is increasing

dramatically.
• The ratio of Virtual Machines per Operator is also increasing rapidly.
• Many organizations are deploying new security “challenges” faster than

they can be detected and remediated.

Humans cannot remember the content of (or the rationale for) all security
policy and will make expedient “tradeoffs.”

Frequent staffing changes leave control ownership gaps.

1/21/2021©2019 Kenneth G. Hartman – All Rights Reserved 4

Presenter
Presentation Notes
One of the problems that I have observed is that we have way more developers creating applications than we have AppSec engineers to support the security reviews.

We have many more operators and system administrators than security staff to ensure that the systems that are getting deployed are secure. This problem is exacerbated by the fact that our orchestration tools allow a single production operator to spin up a large number of virtual machines.

If there are security issues in the applications that get deployed … or vulnerabilities or misconfigurations in the servers that are provisioned, the security team can spend hours of unplanned time dealing with the issues caused by other teams. And that is only if the problems are known!

Security reviews sometimes feel like a contest of “what can we slip past our security team.”

And, if we give our developers and operators the benefit of the doubt (and we should!) – Is it even possible for the average (non-security) human to remember all of our security requirements? This is not scalable!

And then we have the problem wherein the personnel that are responsible for certain security controls change roles or leave the organization.

“We cannot solve our problems
with the same level of thinking
that created them.”

─Einstein

©2019 Kenneth G. Hartman – All Rights Reserved 1/21/2021 5

DevOps is both a culture and a set of processes and

tools that enable development and operation teams to

create, release, and manage applications at a high

velocity following a Systems Development Life Cycle

(SDLC) that is typically automated via Continuous

Integration/Continuous Delivery (CI/CD) tooling.

©2019 Kenneth G. Hartman – All Rights Reserved 1/21/2021 6

What is DevOps?

Presenter
Presentation Notes
We have been talking about DevOps all day at this summit but let's review a common definition. [READ]
Can we say this about Security Control Implementations? What if we change a few words?

DevSecOps is both a culture and a set of processes and tools that enable development and operation teams to create, implement, and manage Security Controls at a high velocity following a Systems Development Life Cycle (SDLC) that is typically automated via Continuous Integration/Continuous Delivery (CI/CD) tooling.

Kind of a radical idea, isn’t it??

REFERENCES:
https://www.atlassian.com/devops
https://aws.amazon.com/devops/what-is-devops/

More on DevOps…
Benefits of DevOps

• Speed

• Rapid Delivery

• Reliability

• Scale

• Improved Collaboration

• Security

DevOps Best Practices

• Continuous Integration

• Continuous Delivery

• Microservices

• Infrastructure as Code

• Monitoring and Logging

• Communication and Collaboration

1/21/2021©2019 Kenneth G. Hartman – All Rights Reserved 7

https://aws.amazon.com/devops/what-is-devops/

Presenter
Presentation Notes
 On this slide, I am listing the promises of DevOps done right. But this doesn’t come for free. The technology part of DevOps is fun and much more easy than the cultural change. But Security must earn a seat at the table.

How do we do that? I believe we must show that we understand DevOps…and even model good behaviors. I propose that we do this using DevOps best Practices for how we implement security controls. I’ll explain what I mean in a moment, but first let me tease this idea with another slide.

Google’s Take: DevOps vs SRE

Google’s Take: DevOps vs SRE

Presenter
Presentation Notes
This next slide is a screenshot of a YouTube video published by Google Cloud Platform. (You can find it by searching for “DevOps vs SRE.”)

Spoiler Alert: The premise of the video is that SRE implements DevOps.

A couple of key points that I really like is:
“Automate this year’s job away,”
“Implement Gradual Change,” and
“Measure Toil” / “Measure Everything”

One of my clients was spending hundreds of hours chasing managers to complete their access reviews, until it was automated.

It doesn’t make sense to automate everything, but much of the time it surely does.

https://www.youtube.com/watch?v=uTEL8Ff1Zvk

© 2019 Kenneth G. Hartman – All Rights Reserved 1/21/2021 9

Is it Worth
the Time?
xkcd.com/1205/

Presenter
Presentation Notes
Don’t you just love XKCD comics? One of my students called this to my attention after we did a module on security automation.
The cartoonist is making the point that if you can eliminate X amount of time by automating a task that you do Y times per day, it is worth doing if you can automate it with Z amount of investment.

But consider this, if it is worth automating simply because of the manual time it saves when it is done Y times, what if there is additional security benefit by doing it automatically some multiple of Y for the same investment?

Once a security task is automated, the task can be done much more frequently. Does that provide more security benefit? Quite possibly. Think continuous monitoring

https://xkcd.com/1205/

Best in Class
looks

Best in Class
in Every Way

Good Hygiene takes
effort and focus, but
the payoff is:

• reduced waste

• operational
efficiencies

• improved security

• sense of ownership.

Presenter
Presentation Notes
Best in class looks like best in class in every way! Have you thought about this? When you walk into a data center and you see racks of servers that look like they puked spaghetti every where, do you have a good feeling about their security? We have the same situations in the cloud—its just that they are virtualized. We have VM sprawl. Many companies have virtual machines that are running. No one is sure why they are running, but they are afraid to turn the things off.

Do you really think that those forgotten machines are getting patched? I came up with an axiom to express this sentiment: “That which is unmanaged is unlikely secure.”

Configuration Management

• Know what you have
• Verify it is in a secure state
• Control access
• Monitor Continuously

Configuration
Identification

Configuration
Control

Configuration
Audit &

Verification

Presenter
Presentation Notes
What is a good place to start with automating security controls in the cloud? I would start with the Center for Internet Security Critical Controls. I am not going to spend much time on this because this is not a talk on the CIS Critical Controls…and others have covered that topic with respect to cloud security.

But I can’t resist throwing out a few thoughts.
What is critical control #1? --Inventory of all authorized and unauthorized hardware
What is #2 –Inventory all authorized and unauthorized software
I call that “Inventory all the things”

Anyone know CC#5? – Secure configurations for hardware & software
Why do we spend to much time focused on configuration management? – To achieve a desired level of security assurance!
Why do we focus on continuous monitoring? – To maintain that level of security assurance!!

This is an important security capability to automate.
Remember, you can’t secure what you don’t know about. The great thing is that in the cloud, we can query the infrastructure.

Security Compliance Terminology

• Security Control – a testable countermeasure designed to
mitigate a specific risk

• Defense-in-depth – Overlapping controls such that if one
control fails, others mitigate the risk.

• Complementary controls create a Security Capability
(such as Access Control or Incident Response) and are an
appreciable organizational asset.

• Security assurance is confidence that an entity meets its
security requirements based on specific, tested evidence.

1/21/2021©2019 Kenneth G. Hartman – All Rights Reserved 12

Presenter
Presentation Notes
I like to ask folks: What is a security control? This isn’t just compliance-speak. As information security professionals, our jobs are all about protecting trust. But that trust needs to have a valid basis.

Why are we trusting what we are trusting? We trust our controls because we have tested them…using the scientific method. Our hypothesis is that the security control is operating effectively, but we need to prove that hypothesis.

I also like to think in terms of security capabilities. Capabilities are an organizational asset. They get stronger when you invest time, effort and resources in improving that capability. They can appreciate in value. Capabilities can also atrophy. Take for example, incident response capability—if you don’t practice using your skills and tools, they will get rusty. Said differently, if you don’t appreciate your capabilities, you will lose them. Pun intended.

Types of
Security
Controls

©2019 Kenneth G. Hartman – All Rights Reserved 1/21/2021 13

Preventive – Prevent the risk
from being realized

Detective – Minimize the risk by
taking early action

Corrective – Restore the systems
to normal operation

Forensic – Determine the root
cause of the incident

Presenter
Presentation Notes
Recall from risk management doctrine, we can take different actions with regard to risk:
We can eliminate the risk, by choosing not to take on a risky initiative
We can transfer the risk. In the cloud, this is often done by choosing to have the cloud service provider deliver the service, rather than us. For example, using PaaS or FaaS transfers the risk of failing to patch to the CSP, who typically is better at it than us.
We can reduce the risk to an acceptable level. This is done using security controls to mitigate the risk. But remember, no security control is perfect or can always reduce the risk to zero. That’s why we use multiple different types of controls to achieve “Defense in Depth.”
Lastly, we can accept the risk, but this should only be done intentionally and not by ignoring the risk.

I believe that it was Dr. Eric Cole, one of the first SANS Fellows who coined the axiom, “Prevention is good, but detection is a must.”

Think about how we can apply these different types of controls in DevSecOps. An Immutable Infrastructure is a preventive control. With security automation we can detect specific threats, if we anticipate them—using things like threat modeling. And of course, with IaC, we can correct misconfigurations, regardless of the intentions of the threat actor. Last of all, with DevOps Security Automation we can triage and perform preliminary forensic analysis.

Example Policy Requirement #1

PCI Requirement 1.2.1
Restrict inbound and outbound traffic to that which is necessary for the
cardholder data environment, and specifically deny all other traffic.

Example Company Configuration Standard
AWS Security Group Egress Rules in production environments shall not be
configured for “Allow All to Anywhere.”

1/21/2021©2019 Kenneth G. Hartman – All Rights Reserved 14

How can this policy be enforced programmatically?

Presenter
Presentation Notes
This policy is probably one of the first to come to mind…And it should be one of the first to get implemented. Every time we launch a new instance using the launch wizard, we will get a new security group with egress open to the world. There is also a good chance that the security groups that your folks create have egress open to the world, unless you are very intentional about policing your software-defined networking configurations. AWS has a service to help with this, but you have to use it! AWS Config can detect and even mitigate it using a Lambda function.

Good? Ok, lets get more elaborate.

https://www.pcisecuritystandards.org/documents/PCI_DSS_v3-2-1.pdf

https://pcicompliance.stanford.edu/sites/g/files/sbiybj7706/f/2._firewall_and_router_configurations_policy_2.pdf

Example Policy Requirement #2
Example Company Policy
Network environments and virtual instances shall be designed and configured to
restrict and monitor traffic between trusted and untrusted connections. These
configurations shall be reviewed at least annually and supported by a documented
justification for use for all allowed services, protocols, ports, and compensating
controls.

Requirements:
1. Proof of Annual Review Tag each SG with Last Review Date & Ticket Number
2. Documented Justification  Reference Justification in Rule Description

1/21/2021©2019 Kenneth G. Hartman – All Rights Reserved 15

Presenter
Presentation Notes
Typically compliance requirements need supporting justifications and authorizations. Here is an example policy that causes many a security team lots of pain. [READ]

After all, how can one keep track of why a specific port and address range needs to be open? And there is a loud groan when the rules need to be reviewed. That is of course if the rules are even being reviewed at all.

There is no easy way to justify security groups and ACLs, but it is certainly much easier at design time, when the rationale is easier to remember. Strong word of advice: document the reason at the time the change is made. Then the periodic reviews are just to make sure that configurations have not changed without a documented change review and approval.

©2019 Kenneth G. Hartman – All Rights Reserved 1/21/2021 16

Proof of Annual Review

Apply tags programmatically
based on ticket closure

Presenter
Presentation Notes
Here is a suggested way to do this: Whenever the LastReviewDate reaches a certain age, generate a ticket that contains the Security Group ID.

Jira works good for this because of its REST API. When the ticket is closed, automation can detect it and update the Security Group Tags with the most recent information. The automation can also make sure that the Tags match the Ticket and that no one changed them manually in AWS.

©2019 Kenneth G. Hartman – All Rights Reserved 1/21/2021 17

Documented Justification

Programmatically validate that the
Description contents is a valid based
on a list of pre-defined justifications

Presenter
Presentation Notes
As you deal with more and more SG’s (and ACLs for that matter) you will start to see patterns emerge. Classic examples might be why a SG needs HTTP, HTTPS, or SSH open. Standardize the reasons…And use infrastructure as code to apply them to the SG Rule  Then it becomes a simple matter of cut and paste as you maintain the code.

Use automation to ensure that the Description field contains a valid justification, based on a look-up file.

Example Policy Requirement #3

PCI Requirement 6.5
Train developers at least annually in up-to-date secure coding techniques,
including how to avoid common coding vulnerabilities.

Example Company Policy
Software developers and all other relevant personnel involved in the
development of software for [COMPANY] are required to undergo annual
training in secure coding techniques for the software platforms(s) with which
they work.

1/21/2021©2019 Kenneth G. Hartman – All Rights Reserved 18

How can this policy be enforced programmatically?

Presenter
Presentation Notes
Here is another example of a security policy. And this one can’t be addressed by AWS Config. (Of course, as soon as I say that someone will work to prove me wrong.)

So, how can we enforce this control programmatically? Two ideas: The first idea is to have automation that runs daily to determine who has not kept current on their required training by querying the Learning Management System. Anyone not current would have their Git credentials disabled automatically.

The second idea is more realtime. Have a Git webhook fire on a code commit and that webhook calls a lightweight app that queries the LMS.

https://www.pcisecuritystandards.org/documents/PCI_DSS_v3-2-1.pdf

https://pcicompliance.stanford.edu/sites/g/files/sbiybj7706/f/17._software_development_secure_coding_guidelines_and_training_policy_0.pdf

©2019 Kenneth G. Hartman – All Rights Reserved 1/21/2021

19

Presenter
Presentation Notes
An application would be listening at the Payload URL for an authenticated JSON message. The application would parse the JSON to determine the User ID of the developer who pushed the code and then will query the LMS to see if the user has completed the required courses. If the User is not current with the required training, the application can set the status of the last commit to “failure” and provide the reason. (Refer to https://git-scm.com/book/en/v2/GitHub-Scripting-GitHub)

Who owns each
security control?

1/21/2021©2019 Kenneth G. Hartman – All Rights Reserved 20

How can organizational changes that
impact control ownership be detected?

Presenter
Presentation Notes
One of the difficult challenges for any mid-to-large sized organization is to document and track who owns each security control.

Detecting Control Ownership Changes

1. Document the owner for each security control in a CSV file.
2. Periodically Query AD for specific User Object Attributes for each control

owner. Save output as a CSV File with date stamp as part of filename.
3. Perform a “diff” of the most recent two files that contain the AD query

results and investigate changes.

1/21/2021© Kenneth G. Hartman – All Rights Reserved | forensicate.cloud 21

Recommended Attributes:
• department
• manager
• title

Sample PowerShell Command:
Get-ADUser <USERID> -properties title, manager, title

NOTE: The hard part is documenting the security controls
and identifying the owner! Coding is the easy part.

Security Automation User Stories
As a Security Auditor, I want security automation functionality that will:

• perform a security configuration audit on a configurable schedule.

• detect a deviation from a security configuration audit baseline and generate an event.

• generate emails to inform others of relevant system security information based on a
detected event or schedule.

• generate tickets to track the status of actions I need others to take to maintain our
security posture based on a detected event or schedule.

• update a ticket based on a security configuration change or other event

• perform an automated task or remediation, based on an event (trigger).

1/21/2021©2019 Kenneth G. Hartman – All Rights Reserved 22

Presenter
Presentation Notes
Ok, now that we have covered a variety of policies that can be automated. Let’s talk about some support capabilities that we need in our security automation…and let’s do it in the form of User Stories.

As a security team, we want to become more agile ourselves, right? And we want to show that we are using DevOps principles.

(I know that there are tools out there that do this, but let’s start with identifying the basic requirements.)

Declarative vs Imperative
“Imperative programming is like how you do something, and declarative
programming is more like what you do.”

• An imperative approach (HOW): “I see that table located under the window. My
friend and I are going to walk over there and sit down.”

• A declarative approach (WHAT): “Table for two, please.”

“Many (if not all) declarative approaches have some sort of underlying imperative
abstraction.” The How is abstracted from the What

https://tylermcginnis.com/imperative-vs-declarative-programming/

1/21/2021©2019 Kenneth G. Hartman – All Rights Reserved 23

https://tylermcginnis.com/imperative-vs-declarative-programming/

Declarative Programming & Infrastructure-as-Code

With Declarative programming, Infrastructure-as-code (IaC) scripts can focus
on What is to be built, rather than How to build it.
• AWS CloudFormation
• HashiCorp Terraform

Declarative IaC systems (like CloudFormation and Terraform) can maintain a
security configuration when ran repeatedly, thanks to idempotence.
• An idempotent operation is one that has no additional effect if it is called

more than once with the same input parameters.

1/21/2021©2019 Kenneth G. Hartman – All Rights Reserved 24

Presenter
Presentation Notes
https://mortoray.com/2014/09/05/what-is-an-idempotent-function/
https://stackoverflow.com/questions/1077412/what-is-an-idempotent-operation
https://cs.stackexchange.com/questions/85733/definition-of-idempotence-of-a-function

1/21/2021 25

Presenter
Presentation Notes
The idea of Policy-as-Code is about 5 years old, but now we are starting to see the concept commercialized.

Sentinel is a solution that HashiCorp highlighted at their recent HashiConf…

Policy as Code in Terraform Enterprise
• Policies are enforced in Terraform Enterprise between the plan and apply.
• Policies validate information in the Terraform plan, state, and configuration.

Examples
• Do not allow resources to be provisioned without tags
• Only provision staging resources in us-west and production resources in us-east
• Do not allow AWS security groups to have egress set to 0.0.0.0

https://www.hashicorp.com/sentinel/

1/21/2021©2019 Kenneth G. Hartman – All Rights Reserved 26

Presenter
Presentation Notes
HashiCorp’s Big Idea: Prevent the Infrastructure-as-Code deployment system from deploying infrastructure that violates security policy!

Sentinel also integrates with:
Vault Enterprise
Nomad Enterprise
Consul Enterprise

https://www.hashicorp.com/sentinel/

Cloud Custodian
• A rules engine for managing public cloud

accounts and resources.

• Manage AWS, Azure, and GCP environments

• Ensure real time compliance to security
policies (like encryption and access
requirements), tag policies, and cost
management.

• Policies are written in YAML files to specify
resource type and are constructed from a
vocabulary of filters and actions.

1/21/2021©2019 Kenneth G. Hartman – All Rights Reserved 27

Presenter
Presentation Notes
Cloud Custodian has been around since 2016. First introduced by CapitalOne and now an independent Open Source project.

1/21/2021©2019 Kenneth G. Hartman – All Rights Reserved 28

Presenter
Presentation Notes
https://stelligent.com/2017/05/15/cloud-custodian-cleans-up-your-cloud-clutter/

Example Custodian Policies (AWS)
• Account - Login From Invalid IP Address

• Account - Detect Root Logins

• Account - Service Limit

• AMI - Stop EC2 using Unapproved AMIs

• Block Resources In Non-Standard Regions

• EBS - Create and Manage Snapshots

• EBS - Delete Unencrypted

• EC2 - auto-tag userName on resources

• EC2 - Old Instance Report

• EC2 - Terminate Unpatchable Instances

• Security Groups - Detect and Remediate
Violations

• ELB - Delete New Internet-Facing ELBs

• ELB - Delete Unused Elastic Load Balancers

• RDS - Delete Unused Databases With No
Connections

• RDS - Terminate Unencrypted Public
Instances

• S3 - Configure New Buckets Settings and
Standards

• S3 - Block Public S3 Object ACLs

• S3 - Encryption

• Tag Compliance Across Resources (EC2, ASG,
ELB, etc.)

• VPC - Flow Log Configuration Check

• VPC - Notify On Invalid External Peering
Connections

1/21/2021©2019 Kenneth G. Hartman – All Rights Reserved 29

Some
Thoughts…

©2019 Kenneth G. Hartman – All Rights Reserved
1/21/2021 30

Terraform, Sentinel, Cloud Custodian, etc.
may not be able to enforce every policy, but
with creativity, the enforcement of almost

every policy is possible somehow

Idempotent, declarative systems are
nice to have, but not necessary

Guiding
Principles

©2019 Kenneth G. Hartman – All Rights Reserved 1/21/2021 31

• You cannot secure what you don't know

• Whatever is unmanaged is unlikely secure

• Security works best when designated individuals
have clearly defined responsibilities and are held
accountable to meet those obligations

• All security requirements (responsibilities) need to
be monitored for compliance using automation the
moment the requirement becomes effective

• “Perfect is the enemy of good,” therefore use
automation and policy-as-code to make iterative
improvements per a lightweight change
management process

Presenter
Presentation Notes
Create the process and the infrastructure and then slowly raise the bar.

A Proposed
Process for

Architecture-
Driven

DevSecOps
Improvement

Propose what needs to be done

Socialize via “Request for Comments”

Design automation to verify/enforce compliance

Dev/Sec/Ops/Test Sign-off on the Policy & Code

Awareness communications to affected parties

Verify/enforce compliance as of Effective Date

Measure, Monitor & Refine (Repeat Cycle)

Presenter
Presentation Notes
Maybe you separate out the proposal and socializing from the coding, before investing too much time in coding it. Just make sure that you have sign-off. You will need this sign-off when it comes time to start enforcing it.

[Story about disabling user accounts that have not had credentials “rotated” & service accounts]

Make automation the bad guy…not the security team

Questions?

© Kenneth G. Hartman – All Rights Reserved | forensicate.cloud 1/21/2021 33

	A DevOps Approach to Security Controls
	Slide Number 2
	Objectives
	Problem Statement
	Slide Number 5
	What is DevOps?
	More on DevOps…
	Google’s Take: DevOps vs SRE
	Slide Number 9
	Best in Class looks �Best in Class �in Every Way
	Configuration Management
	Security Compliance Terminology
	Types of Security Controls
	Example Policy Requirement #1
	Example Policy Requirement #2
	Slide Number 16
	Slide Number 17
	Example Policy Requirement #3
	Slide Number 19
	Who owns each security control?
	Detecting Control Ownership Changes
	Security Automation User Stories
	Declarative vs Imperative
	Declarative Programming & Infrastructure-as-Code
	Slide Number 25
	Policy as Code in Terraform Enterprise
	Cloud Custodian
	Slide Number 28
	Example Custodian Policies (AWS)
	Some Thoughts…
	Guiding Principles
	A Proposed Process for Architecture-Driven �DevSecOps�Improvement
	Questions?

