Log-Connections.ps1 User Guide

By Ken Hartman
web: www.KennethGHartman.com

email: kgh@kennethghartman.com

General Description

The Log-Connections.ps1 file is a PowerShell Script that Logs active TCP connections and includes the
process ID (PID) and process name for each connection on a Microsoft Windows computer. The log file
name is a parameter that is passed to the script at run time. A log entry is created every time that the
list of processes with open connections or listening ports changes. If the ports or remote addresses are
not yet established, they are shown as an asterisk (*).

The Log-Connections script is based on the netstat command, “netstat —nao,” which can be run at
the Windows command prompt to display a snapshot of all connections and listening ports. The —0
switch tells netstat to display the owning process ID that is associated with each process. A limitation
of the netstat command is that it cannot report the associated process name, just the PID. To
achieve this, the Log-Connections PowerShell script calls the Get-NetworkStatistics function.
This function was written by Shay Levy (http://PowerShay.com) and is available at
http://poshcode.org/2701 .

The Log-Connections script calls the Get-NetworkStatistics function repeatedly in an infinite
loop, comparing the current snapshot with the previous. If there is a change, the current snapshot is
time stamped, logged to the file, and optionally passed through to the PowerShell pipeline.

Passing the connections snapshot object through to the PowerShell pipeline allows the data to be
manipulated or displayed in real-time by other PowerShell cmdlets. This will be illustrated in the
examples that follow.

Quick Intro to PowerShell

Windows PowerShell is a command-line shell and a scripting language that is built upon the .NET
Framework. PowerShell has been around since 2006, but is included in the base OS with Windows 7 and
Windows Server 2008 R2.

PowerShell can be invoked by typing “powershell” in the search box above the Windows Start Button,

- See more results

| powershell X

or by typing “powershell” at the Windows command prompt.

© Kenneth G. Hartman, 2012 Page 1

A great website to learn more about PowerShell is at http://www.powershellpro.com/powershell-

tutorial-introduction/.

PowerShell Security Features
PowerShell has an script execution policy that by default will prevent scripts from being executed
unintentionally. To learn more about execution policies, type the following command in PowerShell:

Get-Help about_Execution_Policies

To be able to run the following examples, it is suggested that you change the execution policy to
“RemoteSigned” so that local scripts can run unsigned and remote scripts can only run if signed by a
trusted entity. To do this run the following PowerShell command:

Set-ExecutionPolicy RemoteSigned —scope CurrentUser
To revert back to the default, just type:
Set-ExecutionPolicy Restricted

Another feature of PowerShell is that scripts cannot be executed in the current directory by typing just
the script name. Instead they must be prefaced with a dot and a backslash, (“.\”). This is illustrated in
the examples below.

EXAMPLE 1

powershell _\Log-Connections.psl c:\workspace\mylog.csv

C:\Windows\system32\cmd.exe

c :\Temp>powershell .\Log—Connections.psl c:\workspace\mylog.csv

Example 1 shows the Log-Connections.ps1 script being invoked from the Windows command prompt.
The ps1 script and the complete path to the log file are passed in as arguments the command
“powershell.” Also note the use the file extension of “CSV.” This is convenient because on many
systems when a CSV file is double clicked it will launch Microsoft Excel. Any other extension, including
“TXT” is also acceptable.

EXAMPLE 2

powershell c:\Temp\Log-Connections.psl mylog.csv svchost

© Kenneth G. Hartman, 2012 Page 2

BEX C\Windows\system32\cmd.exe =L

lc :\Temp>cd c:\workspace

c :\workspace>powershell c:\Temp\Log—Connections.psl mylog.csv svchost

Example 2 is very similar to the first one except a process name has been passed in as an argument and
just the file name (without the path) has been provided, so the log file will be saved in the current
directory, c:\workspace. The full path to the script is provided because it is in c:\temp.

Note: if the log file exists already, the new observations will be appended to the bottom

EXAMPLE 3

powershell _\Log-Connections.psl mylog.csv svchost -PassThru

g B
CAWindows\system32\cmd.exe ‘C’_%

c :\Temp>powershell .\Log—Connections.psl mylog.csv suchost —PassThru

PID
ProcessName
LocalAddress
TimeStamp
RemotePort

1036

svuchost

0.8.0.0
2012-12-17T715:51:40.9901046-06 : 00

a
LISTENING
0.0.0.09
135

ICP

1568

suchost

n.0.8.0
3912—12—1?T15:51:48.9991846—96:99

LISTENING
.0.6.0

3389
ICP

1128 ¥

Using the “~PassThru” switch will cause the script display the results to the screen in a raw format in
addition to logging them in the log file.

EXAMPLE 4
-\Log-Connections.psl -ProcName svchost -Filepath mylog.csv

© Kenneth G. Hartman, 2012 Page 3

CAWindows\system32\cmd.exe - powershell iﬂ]!

c :\Temp>powershell
Windows PowerShell
Copyright <(C) 2889 Microsoft Corporation. All rights reserved.

PS C:\Temp> .\Log—Connections.psl —ProcName suchost —-Filepath mylog.csv

In Example 4 the user typed “powershel 1” at the command prompt to invoke PowerShell. Then the
name of the script and its arguments were typed at the PowerShell prompt.

This example also demonstrated the use of the named parameters convention. Passing in the
parameter value (e.g. “mylog.csv”) after the parameter name (“-Filepath”) allows the parameters to be
passed in out of order.

EXAMPLE 5

-\Log-Connections.psl

C:\Windows\system32\cmd.exe - powershell

:\Temp>powershell
Windows PowerShell
Copyright (C)> 28089 Microsoft Corporation. All rights reserved.

PS C:\Temp> .\Log—Connections.psl
cmdlet Log—Connections.psl at command pipeline position 1

Supply values for the following parameters:
FilePath:

Example 6 shows that PowerShell will gracefully request any missing parameters that are mandatory. In
this case it is the FilePath value.

EXAMPLE 6

-\Log-Connections.psl mylog.csv svchost -PassThru | Format-Table

y B
C:\Windows\system32\cmd.exe - powershell Lﬂj&]

PS C:\Temp> .\Log—Connections.psl mylog.csv svchost —-PassThru | Format-Table -
ProcessN Localfidd TimeStam RemotePo State RemoteAd LocalPor irotoco g

suchost
suchost
svchost
suchost
suchost
suchost
svchost
suchost
suchost
suchost
svchost

e ®
e ®

2O e®
oy 0RO ®

¥ xx x0000®

© Kenneth G. Hartman, 2012 Page 4

Example 6 illustrates piping the output of the Log-Connections script to the Format-Table cmdlet. The
Format-Table cmdlet produces a nice table of the results that will grow in real time.

EXAMPLE 7
-\Log-Connections.psl mylog.csv iexplore -PassThru | Out-GridView

BN C:\Windows\system32\cmd.exe - powershell lﬂm

PS C:\Temp> .\Log—Connections.psl mylog.csv iexplore —-PassThru | Out—-Gridview

Using the Out-Gridview cmdlet, as shown in Example 7, will produce a grid of the results. The grid grows
in real time and can be filtered and sorted. The columns can also be re-arranged.

'E ALog-Connections.ps1 mylog.csv iexplore -PassThru | Out-GridView LELM’
[# Add criteria » |

TimeStamp PID ProcessName | LocalAddress LocalPort | RemoteAddress | RemotePort | State Protocol |
2012-12-17T716:52:10.1680190-06:00
2012-12-17T16:52:18.0648086-06:00 6980 iexplore 192.16840.177 55513 173.194.64.106 80 ESTABLISHED TCP
2012-12-17T16:52:18.0648086-06:00 6980 iexplore 127.001 56771 * - upP
2012-12-17T16:52:46.6536672-06:00 6980 iexplore 192.16840.177 55513 173.19464.106 80 ESTABUSHED TCP
2012-12-17T16:52:46.6536672-06:00 6980 iexplore 192.16840.177 55514 17319464106 80 ESTABLISHED TCP
2012-12-17T16:52:46.6536672-06:00 63980 iexplore 127.0.0.1 56771) " uce S
2012-12-17T16:52:49.6509669-06:00 6980 iexplore 192.168.40.177 55513 173.194.64.106 80 ESTABLSHED TCP 1
2012-12-17T16:52:49.6509669-06:00 6980 iexplore 19216840177 55514 17319464106 80 ESTABLISHED TCP
2012-12-17T16:52:49.6509669-06:00 6980 iexplore 192.16840.177 55515 7412522534 &0 ESTABLSHED TCP
2012-12-17T16:52:49.6509669-06:00 6980 iexplore 192.168.40.177 55516 1731946494 80 ESTABLISHED TCP
2012-12-17T16:52:49.6509669-06:00 6980 iexplore 127.001 56771 2 . uDP
2012-12-17T16:52:57.3757393-06:00 6980 iexplore 192.16840.177 35513 17319464106 80 ESTABLISHED TCP
2012-12-17T16:52:57.3757393-06:00 6980 iexplore 192.168.40.177 55514 173.19464.106 80 ESTABLISHED TCP
2012-12-17T16:52:57.3757393-06:00 6980 iexplore 192.168.40.177 55515 7412522534 80 ESTABLISHED TCP
2012-12-17T16:52:57.3757393-06:00 6980 iexplore 192.168.40.177 55516 173.1946494 80 ESTABLISHED TCP 2

\

The grid can also be filtered using the “Add Criteria” button as shown below:

£4 \Log-Connections.ps1 mylog.csv iexplore -PassThru | Out-GridView @M

and RemoteAddress contains ?4 x

4 Add criteria ¥ 1 \ & Clear All |

TimeStamp ‘ PID ProcessName l LocalAddress LocalPort i RemoteAddress | RemotePort | State Protocol
2012-12-17T16:52:49.6509669-06:00 6980 iexplore 192.168.40.177 55515 7412522534 80 ESTABUSHED TCP
2012-12-17T16:52:57.3757393-06:00 6980 iexplore 192.168.40.177 55515 7412522534 80 ESTABUSHED TCP

© Kenneth G. Hartman, 2012 Page 5

