
What is Fabric?
Core Concept
• Command-line framework that brings LLM power to your terminal
• Think “ChatGPT for your command line”
• Open-source and extensible

Key Features
• Run predefined or custom LLM patterns
• Process text from files, URLs, or command output
• Support for multiple LLM providers
• Easy integration with existing CLI tools

Fabric Use Cases & Benefits
Use Cases
• Code analysis and documentation
• Log file investigation
• Content summarization
• Data extraction and transformation
• Security analysis automation

Benefits
• Reduces context switching between tools
• Automates repetitive tasks
• Brings AI capabilities to existing workflows

Why Fabric Matters
For Developers
• Accelerates code review and documentation
• Simplifies debugging workflows
• Integrates with Git and VS Code
• Automates repetitive coding tasks

For Security Professionals
• Automated log analysis and threat hunting
• Quick incident response summaries
• Malware behavior analysis
• Pattern detection in large datasets

Why Fabric Matters (continued)
Business Impact
• Increased productivity through automation
• Better decision-making with AI-assisted analysis
• Reduced time-to-insight for investigations
• Lower barrier to entry for AI adoption

Key Differentiators
• Command-line native
• Works with existing tools
• Extensible pattern system

Demonstration
cat emailheader.txt | fabric -p analyze_email_headers |
tee headers.md

cat aws-flowlog.txt | fabric -p analyze_logs | tee
flowlog.md

tcpdump -r dns-remoteshell.pcap -A | fabric -p
analyze_logs -m gemini-2.0-flash-exp | tee remoteshell.md

fabric -u
https://www.trendmicro.com/en_us/research/19/g/multistage-
attack-delivers-billgates-setag-backdoor-can-turn-
elasticsearch-databases-into-ddos-botnet-zombies.html |
fabric -p analyze_malware -m gemini-2.0-flash-exp | tee
malware.md

Power and Flexibility of CLI vs GUI
• Speed & Resources

• Faster execution time
• Minimal memory footprint
• Reduced CPU usage

• Remote Capabilities
• SSH access to remote systems
• Headless server management
• Cross-platform compatibility

• Control & Precision
• Direct system interaction
• Exact specification of parameters

• Automation Ready
• Native scripting support
• Reproducible commands

Automation & Scripting Benefits
• Command Chaining

Example: Find large log files and analyze with Fabric
find /var/log -size +10M | xargs fabric -p analyze_logs

• Task Scheduling
Example: Daily security scan
0 0 * * * security_scan.sh | fabric -p summarize | mail -s "Daily Security
Scan Report" soc@example.com

• Batch Processing
Example: Process multiple files
for file in *.log; do
 fabric -p analyze_logs "$file" > "${file%.log}_report.md"
done

• Workflow Automation
Example: Automated deployment pipeline
git pull && make test && make deploy || send_alert "Deploy failed"

Security Professional’s CLI Toolkit
Essential Tools & Examples
• Log Analysis

grep 'ERROR' auth.log | awk '{print $1,$2}' | sort | uniq -c

• Network Monitoring
tcpdump -i eth0 'port 443' -w capture.pcap

• Incident Response
Quick filesystem changes check
find / -mtime -1 -ls

• Process Investigation
Check for suspicious processes
ps aux | grep -i '[d]aemon\|[s]erver' | sort -rk 3,3

• File Integrity
Generate & compare checksums
find /etc -type f -exec md5sum {} \; > current_sums.txt
diff current_sums.txt baseline_sums.txt

Essential Linux Commands
Basic Text Operations
• cat: Display file contents

cat file.txt

• head/tail: View start/end of files
head -n 5 file.txt # First 5 lines
tail -f log.txt # Follow log updates

• grep: Search text patterns
grep "error" log.txt # Find "error" in file

• echo: Print text
echo "Hello World" # Display text

• tee: Read/write streams
echo "test" | tee output.txt # Display and save

These commands form the foundation of text processing in Linux and are essential for
working with Fabric’s input/output streams.

File Redirection Basics
• Standard Input (stdin): < or 0<

fabric -p ai < input.txt

• Standard Output (stdout): > or 1>
fabric -p summarize > output.txt # Overwrite
fabric -p summarize >> output.txt # Append

• Standard Error (stderr): 2>
fabric -p not_a_pattern 2> errors.log

Common Patterns
• Combine stdout and stderr:

fabric -p ai > all.log 2>&1

• Discard output:
fabric -p test > /dev/null

Remember: Single > overwrites, double >> appends

Markdown Basics
Markdown is a lightweight markup language for formatting text documents.

Common Syntax
• Bold text using **double asterisks**
• Italic text using *single asterisks*
• Create lists with - or 1. for numbered lists
• Links using [text](url)
• Headers with # (1-6 #’s for different levels)

Code
Use backticks (`) for inline code and ``` for code blocks

https://example.com

VS Code & Fabric Integration
• VS Code is a powerful IDE that supports Fabric I/O
• Not that you have to install VS Code, but it’s a good IDE
• Especially nice for working with Markdown files

Helpful VS Code Extensions
• Markdown Preview Enhanced: For viewing Markdown files
• Markdown PDF: Convert Markdown to PDF
• vscode-pdf: For viewing PDF files

Chrome Extension
• Markdown Viewer Extension: https://github.com/simov/markdown-viewer

https://github.com/simov/markdown-viewer

The Workshop Development Environment
Code-Server Access
• Each student has received:

• Personal URL (e.g., https://workshop-XX.example.com)
• Unique password for authentication

• Code-server provides VS Code in your browser
• No local installation needed

Pre-configured Environment
Your VM includes:
• Fabric framework pre-installed
• Required extensions loaded
• Pattern directories configured
• Test data available

Accessing Your Development Environment
Getting Started
1. Open your assigned URL in any browser
2. Enter your provided password
3. You’ll see a familiar VS Code interface
4. Terminal is ready with Fabric commands
Take a moment and do this now.

Hands-on Exercise
Running Fabric in VS Code Terminal
1. Open integrated terminal (Ctrl+`)
2. Basic command structure:
Look at the Help System
fabric --help

Run a Pattern
fabric --pattern hello_world

Stream output to console
fabric --pattern hello_world --stream

or this way for short
fabric -s -p hello_world

Commands to Run for Yourself
fabric -h # View the fabric help

fabric -L # View the list of models

fabric -l # View the list of patterns

fabric -p summarize --dry-run # View the summarize pattern

cat input.md | fabric -p summarize # Summarize the
input.md file

Introduction to Prompt Engineering
Key Concepts
• Crafting effective prompts for LLMs
• Understanding context and specificity
• Balancing precision with flexibility
• Iterative refinement of prompts
• Handling edge cases and errors
• Understanding Temperature

Resources
• Best Practices for Prompt Engineering with the OpenAI API
• Prompt Engineering Guide

https://help.openai.com/en/articles/6654000-best-practices-for-prompt-engineering-with-the-openai-api
https://www.promptingguide.ai/

Prompt Examples
Bad Prompts
• “analyze this” or “what’s wrong with this code?”
• “fix it” or “make it better”
• “check for security issues”

Good Prompts
• “Analyze this Python code for potential security vulnerabilities, focusing on input

validation and SQL injection risks. Format findings as a bulleted list with severity
levels.”

• “Review this Apache access log for suspicious patterns indicating potential
intrusion attempts. Group findings by IP address and timestamp.”

• “Examine this network traffic capture for signs of data exfiltration, particularly
focusing on unusual DNS queries and HTTPS patterns. Highlight any IPs or
domains that require investigation.”

Understanding Temperature in LLMs
What is Temperature?
• A parameter that controls response randomness
• Scale from 0.0 to 1.0
• Higher values = more creative/random
• Lower values = more focused/deterministic

Temperature Guidelines
• 0.0: Best for factual responses, code analysis, security scanning, pattern

matching
• 0.7: Good for creative writing, brainstorming, general conversation
• 1.0: Suitable for maximum creativity, story generation, exploring alternatives

Normally, you can just leave the default value (0.7)

LLM Hallucinations
What are Hallucinations?
• When LLMs generate false or made-up information
• Can appear convincing but be completely incorrect
• A significant challenge in AI safety and reliability

Common Types of Hallucinations
• Fabricating facts, statistics, or references
• Creating non-existent citations or sources
• Inventing technical details or procedures
• Mixing up or combining unrelated information

Mitigating Hallucinations
• Use lower temperature settings (0.0-0.3)
• Always verify critical information
• Cross-reference with trusted sources
• Be especially careful with:

• Technical specifications
• Historical dates and facts
• Citations and references
• Security-related information

Best Practices
• Treat LLM outputs as suggestions, not facts
• Implement human verification for critical tasks
• Use system prompts that emphasize accuracy
• Consider using multiple LLMs for cross-validation

Understanding the context Parameter
• Context files tell the AI how to respond to best meet your needs.
• Fabric expects the files to be in the ~/.config/fabric/contexts directory.
• Use -C or --context to specify the context file.
• use -x to list the context files.

Move the files and try them out:
cp context-*.md ~/.config/fabric/contexts/

echo "explain the CIA Traid" | fabric -C context-expert.md
-p raw_query

echo "explain the CIA Traid" | fabric -C context-
layperson.md -p raw_query

Understanding Fabric Sessions
• When you use the --session= parameter, Fabric will use the session file to store

the conversation history.
• This will either create a new session or continue an existing session.
• The session file is stored in the ~/.config/fabric/sessions directory.
• Use -X or --listsessions to list the sessions.
• Use -W or --wipesession= to delete a session.
• To print the session, use --printsession.
• Output the entire session to the output file using --output-session.
• Specify the output file using -o or --output.

Understanding Fabric Patterns
What are Fabric Patterns?
• Pre-defined prompt templates that leverage LLMs for specific tasks
• Building blocks for automating common workflows
• Can be customized and extended for specific needs
• Designed for reusability and consistency

Let’sExamine Some Patterns
• summarize
• extract_wisdom
• analyze_logs

https://github.com/danielmiessler/fabric/blob/main/patterns/summarize/system.md
https://github.com/danielmiessler/fabric/blob/main/patterns/extract_wisdom/system.md
https://github.com/danielmiessler/fabric/blob/main/patterns/analyze_logs/system.md

Using Fabric Patterns Effectively
Best Practices
• Examine the contents of the pattern
• Choose the right pattern for your use case
• Understand pattern inputs and outputs
• Test patterns with sample data first
• Document any customizations you make
• Share successful patterns with the community

Git & GitHub Essentials
Version Control Basics
• Git tracks changes in your code over time
• Enables collaboration between developers
• Maintains history of all modifications
• Track who changed what and when
• Revert to previous versions

Key Git Commands
git clone # Copy a repository
git add # Stage changes
git commit # Save changes
git push # Upload to GitHub
git pull # Download updates

The Fabric Repository
Repository Overview
github.com/danielmiessler/fabric

Key Components
• /patterns: AI prompt templates
• README.md: Getting started guide
• Commit History

Community Features
• Issues: Bug reports and feature requests
• Discussions: Community interaction
• Pull Requests: Contribute improvements
• Stars: Show support

https://github.com/danielmiessler/fabric

Understanding GitHub Codespaces
What is Codespaces?
• Cloud-based development environment
• Full VS Code in your browser
• Pre-configured development container
• Accessible from anywhere

Key Benefits
• No local setup required
• Consistent environment
• Integrated with GitHub
• Full terminal access
• Extensions pre-installed

Setting Up Fabric in Codespaces
Quick Start
1. Navigate to fabric_on_codespace repository
2. Click “Code” button
3. Select “Open with Codespaces”
4. Choose machine type

Environment Features
• Fabric pre-installed
• Required dependencies ready
• Pattern directories configured
• Github authentication handled

NOTE: In Codespaces you must provide your own API keys for Fabric.

https://github.com/Resistor52/fabric_on_codespaces

Configuring Your Environment
1. Once your Codespace loads, create a .env file:
cp .env-example .env

2. Edit the .env file to add your API keys:
OPENAI_API_KEY=sk-...
ANTHROPIC_API_KEY=sk-...

Troubleshooting Common Issues
If API calls fail:
• Verify your .env file exists
• Check your API keys are valid
• Ensure no extra spaces in .env
• Run fabric -L to see if the models are available

Codespaces Best Practices
• Always use environment variables for API keys
• Do not commit your .env file!
• Keep your Codespace up to date (Commit any changes)

Remember to stop your Codespace when not in use to conserve resources

Prompts Deep Dive: Crafting Effective Prompts
Key Elements
• Be clear and specific in your instructions
• Break complex tasks into smaller steps
• Include relevant context and constraints
• Use consistent formatting and structure
• Specify the desired output format

Example
Less effective
echo "analyze this: $(cat document.txt)" | fabric -p ai

More effective
echo "analyze this technical document and highlight security
implications: $(cat document.txt) " | fabric -p ai

Understanding Context & Specificity
Context Matters
• Provide relevant background information
• Define technical terms and acronyms
• Specify the target audience
• Include any necessary constraints
• Set the scope of the analysis

Example
Adding context
echo "Review this code from a GDPR compliance perspective,
focusing on data privacy requirements for EU customers:
$(cat my_script.py)" | fabric -p ai

Balancing Precision & Flexibility
Finding the Sweet Spot
• Be precise enough to get desired results
• Leave room for LLM’s capabilities
• Avoid over-constraining the response
• Allow for creative solutions
• Use guardrails when needed

Example
Too rigid
echo "Write exactly 5 bullet points about security" | fabric -p
ai

Better balance
echo "Write a concise security analysis focusing on key risks.
Use bullet points." | fabric -p ai

Iterative Prompt Refinement
The Refinement Process
• Start with a basic prompt and analyze the output quality
• Identify areas for improvement
• Adjust and test incrementally

Example
Initial attempt
echo "Check this log file: $(cat security.log)" | fabric -
p ai

Refined version
echo "Analyze this log file for failed login attempts,
highlighting IP addresses and timestamp patterns: $(cat
security.log)" | fabric -p ai

Handling Edge Cases & Errors
Best Practices
• Anticipate potential failure modes
• Include error handling instructions
• Validate input data quality
• Plan for unexpected outputs
• Use defensive prompting techniques

Example
With error handling
echo "Review this log file for security incidents. If the
file is empty or corrupted, report the issue. If no
incidents found, explicitly state that. Log: : $(cat
security.log)" | fabric -p ai

Patterns Deep Dive: Anatomy of a Fabric Pattern
Fabric patterns ARE prompts

Core Sections
• IDENTITY and PURPOSE: Defines the AI’s role
• STEPS: Clear instructions for task completion
• OUTPUT INSTRUCTIONS: Formatting and structure rules
• INPUT: The data to be processed (typically blank)

Why This Structure Matters
• Creates consistent, reliable outputs
• Makes patterns reusable and maintainable
• Ensures clear communication with the LLM

Defining Pattern Identity & Purpose
Key Components
• Clear role definition for the AI
• Specific responsibilities
• Scope of operations
• Success criteria
• Contextual boundaries

Example Pattern Header
IDENTITY and PURPOSE
You are an AI security log analyzer responsible for
identifying potential security incidents in system logs.
You meticulously examine each log entry for patterns
indicating suspicious activity...

Structuring Pattern Steps
Best Practices
• Break down complex tasks
• Use sequential, logical order
• Make steps atomic and clear
• Include validation points
• Define expected outcomes

Example Steps Section
STEPS
- Extract relevant log entries based on timestamp
- Identify IP addresses and user agents
- Compare against known threat patterns
- Categorize severity of findings
- Format results in specified structure

Defining Output Instructions
Essential Elements
• Specify output format (Markdown, JSON, etc.)
• Define structure and hierarchy
• Include formatting rules
• Provide validation criteria
• Set quality standards

Example Output Section
OUTPUT INSTRUCTIONS
- Output must be in Markdown format
- Use H2 for main findings
- List each incident with timestamp
- Include severity rating (High/Medium/Low)
- Ensure all IPs are properly formatted

Creating Complete Patterns
Pattern Development Workflow
1. Define the AI’s role clearly
2. Break down the task into steps
3. Specify output requirements
4. Include example inputs/outputs
5. Test and refine

Tips for Success
• Think step-by-step
• Be explicit about requirements
• Test with various inputs
• Document pattern behavior

Getting Hands-on with Fabric
Key Use Cases
• Document Analysis & Claims Extraction
• Security Log Analysis
• Incident Response
• Code Review & Documentation
• Threat Analysis & Reporting

Why These Examples?
• Real-world applications
• Common security workflows
• Demonstrate pattern flexibility
• Show practical value

Document Analysis Examples
Useful Patterns
• analyze_claims
• extract_extraordinary_claims
• extract_insights
• create_cyber_summary

Example Usage
Extract key claims from a document
cat threat_report.md | fabric -p analyze_claims

Create a cybersecurity summary
cat advisory.md | fabric -p create_cyber_summary

Security Log Analysis
Relevant Patterns
• analyze_logs
• analyze_incident
• create_sigma_rules
• extract_poc

Example Usage
Analyze security logs
cat security.log | fabric -p analyze_logs

Create detection rules
cat incident.json | fabric -p create_sigma_rules

Threat Analysis & Reporting
Key Patterns
• analyze_threat_report
• analyze_threat_report_trends
• create_stride_threat_model
• create_network_threat_landscape

Example Usage
Analyze a threat report
cat threat_report.md | fabric -p
analyze_threat_report_trends

Create threat model
cat architecture.md | fabric -p create_stride_threat_model

Reverse Engineering Fabric Patterns
fabric -l # list all patterns

ls ~/.config/fabric/patterns/ # Examine the pattern
directory

fabric -p extract_wisdom --dry-run # Read the pattern's
prompt

fabric -p analyze_threat_report --dry-run >
analyze_threat_report.md

nano analyze_threat_report.md # Edit the pattern

Creating Custom Patterns
Example: AWS CloudTrail Analysis Pattern
Set up pattern directory
export PATTERN_DIR="$HOME/.config/fabric/patterns"
mkdir -p $PATTERN_DIR/analyze_aws_cloudtrail

Create the pattern
echo "Analyzing AWS CloudTrail logs that identifies
privilege escalation attempts" | fabric -p create_pattern
| tee $PATTERN_DIR/analyze_aws_cloudtrail/system.md

Inspect the pattern
cat $PATTERN_DIR/analyze_aws_cloudtrail/system.md

Test the pattern
cat cloudtrail.log | fabric -p analyze_aws_cloudtrail

Chaining Commands to Exploit CLI Power
The Power of Unix Philosophy
• Each program does one thing well
• Programs work together
• Programs handle text streams as universal interface

Understanding Subshells
• A subshell is a child process of the current shell
• Created using $() or backticks `
• Example: echo "Today is $(date)"
• Nested commands execute from innermost to outermost
• Useful for command substitution and complex pipelines

Chaining Commands - Loops
Bash For Loops
• Iterate over lists, ranges, or command output
• Basic syntax:

for item in list; do
 command $item
done

• Examples:
Loop over numbers
for i in {1..5}; do echo $i; done

Loop over files
for file in *.txt; do cat $file; done

Loop over command output
for user in $(who | cut -d' ' -f1); do
 echo "Hello $user"
done

Hands on Exercise: Summarize a Pattern
Summarize the extract_wisdom pattern
fabric p extract_wisdom --dry-run | fabric -p
summarize_prompt > output.md
cat output.md

Use `tee` to write to a file and stdout
fabric -p extract_wisdom --dry-run | fabric -p
summarize_prompt | tee output.md

TIP: Try different models! (This works best with OpenAI GPT4o)

Hands on Exercise: Summarize All Patterns
Loop through all patterns
for pattern in $(fabric -l); do echo "--> "$pattern; done

for pattern in $(fabric -l); do
 echo -e "\n## "$pattern | tee -a summaries.md;
 fabric -p $pattern --dry-run | fabric -p
summarize_prompt | tee -a summaries.md;
done

Protip: Ask AI to explain commplicated CLI commands
Note the use of append mode tee -a to add to the file.

Q&A and Wrap-Up
Key Takeaways
• Fabric enhances CLI workflows with LLM capabilities
• Command chaining multiplies tool effectiveness
• Integration with VS Code and GitHub streamlines development
• Security use cases demonstrate practical applications

Questions?

Resources for Further Learning
Documentation & Repositories
• Fabric GitHub Repository
• Fabric Documentation
• VS Code Command Line Tools

CLI Learning Resources
• Tips for success with Command Line Interfaces using BASH
• Slice and Dice Data using grep, head, tail, cut, sort, tr, uniq and wc

• explainshell.com - Decode command-line arguments
• commandlinefu.com - Community-driven command-line tips
• ss64.com - Command line reference
• Learn Shell - Learn Shell

https://github.com/danielmiessler/fabric
https://github.com/danielmiessler/fabric/blob/main/README.md
https://code.visualstudio.com/docs/terminal/basics
https://headintheclouds.site/episodes/episode5
https://headintheclouds.site/episodes/episode6
https://explainshell.com/
https://commandlinefu.com/
https://ss64.com/
https://learnshell.org/

Getting Help & The FabricCommunity
Stay Connected to the Fabric Project
• Fabric Intro Video
• Follow @danielmiessler on Twitter/X
• Learn more at danielmiessler.com/

Contributing to Fabric
• How to report issues or get help

• Contributing guidelines

https://youtu.be/wPEyyigh10g
https://x.com/danielmiessler
https://danielmiessler.com/
https://github.com/danielmiessler/fabric/issues
https://opensource.guide/

Workshop Feedback
Help Us Improve
• Complete the feedback survey
• Share your experience
• Suggest improvements
• Request future topics
Feedback Survey

Thank You!
Thank you for participating in the Mastering Fabric Workshop

https://docs.google.com/forms/d/e/1FAIpQLSdSvz9_KJNf4WxiS9nmUuirCVVdGBOoXLbZcT2tV8sExozsMg/viewform?usp=header

Contact Information
Lucid Truth LLC
• Website: LucidTruthTechnologies.com
• Email: ken@lucid-truth.comclear

• Twitter/X: @kennethghartman
• LinkedIn: @kennethghartman
• Subscribe to our newsletter at the bottom of the Lucid Truth Technologies Blog page.

Workshop Materials
• Slides and code available at: github.com/Resistor52/fabric-workshop
• Fabric Learning Environment: github.com/Resistor52/fabric-course-vm
• Fabric on Codespaces: github.com/Resistor52/fabric-on-codespaces

https://lucidtruthtechnologies.com
mailto:ken@lucid-truth.comclear
https://twitter.com/kennethghartman
https://www.linkedin.com/in/kennethghartman/
https://lucidtruthtechnologies.com/digital-forensics-expert-blog/
https://github.com/Resistor52/fabric-workshop
https://github.com/Resistor52/fabric-course-vm
https://github.com/Resistor52/fabric-on-codespaces

	What is Fabric?
	Fabric Use Cases & Benefits
	Why Fabric Matters
	Why Fabric Matters (continued)
	Demonstration
	Power and Flexibility of CLI vs GUI
	Automation & Scripting Benefits
	Security Professional’s CLI Toolkit
	Essential Linux Commands
	File Redirection Basics
	Markdown Basics
	VS Code & Fabric Integration
	The Workshop Development Environment
	Accessing Your Development Environment
	Hands-on Exercise
	Commands to Run for Yourself
	Introduction to Prompt Engineering
	Prompt Examples
	Understanding Temperature in LLMs
	LLM Hallucinations
	Mitigating Hallucinations
	Understanding the context Parameter
	Understanding Fabric Sessions
	Understanding Fabric Patterns
	Using Fabric Patterns Effectively
	Git & GitHub Essentials
	The Fabric Repository
	Understanding GitHub Codespaces
	Setting Up Fabric in Codespaces
	Configuring Your Environment
	Troubleshooting Common Issues
	Codespaces Best Practices
	Prompts Deep Dive: Crafting Effective Prompts
	Understanding Context & Specificity
	Balancing Precision & Flexibility
	Iterative Prompt Refinement
	Handling Edge Cases & Errors
	Patterns Deep Dive: Anatomy of a Fabric Pattern
	Defining Pattern Identity & Purpose
	Structuring Pattern Steps
	Defining Output Instructions
	Creating Complete Patterns
	Getting Hands-on with Fabric
	Document Analysis Examples
	Security Log Analysis
	Threat Analysis & Reporting
	Reverse Engineering Fabric Patterns
	Creating Custom Patterns
	Chaining Commands to Exploit CLI Power
	Chaining Commands - Loops
	Hands on Exercise: Summarize a Pattern
	Hands on Exercise: Summarize All Patterns
	Q&A and Wrap-Up
	Resources for Further Learning
	Getting Help & The FabricCommunity
	Workshop Feedback
	Contact Information

