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The Traditional Axiom & The New Reality
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“Prevention is good, but detection is a must.”

“Prevention is a must, otherwise you spend all 
your energy playing Whack-a-Mole with alerts.”
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Why shift to preventive, org-level controls?

The Problem:

• Alert Fatigue: Security teams are overwhelmed playing Whack-a-Mole with misconfigurations 

• Resource Drain: Time spent on basic violations instead of sophisticated threats 

• Compliance Gaps: Inconsistent security postures across cloud environments

The Solution:

• Block Before Deploy: Prevent misconfigurations at the source 

• Scale Automatically: Policies inherit across entire organizational hierarchies

• Reduce Noise: Fewer alerts mean higher priority alerts get attention 

• Multi-Cloud Consistency: Same governance approach across AWS, Azure, GCP

The Case for Organizational Controls
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Name of Org-Level ControlCloud Service Provider

Service Control PoliciesAmazon Web Services

Azure PolicyMicrosoft Azure

Organization Constraints + 
Deny Policies

Google Cloud

Organization-level Controls Comparison
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What are SCPs?

• Org-wide permission guardrails in AWS Organizations

• Define maximum available permissions (permission 
ceilings)

• Apply to Organization → Organizational Units → Accounts

• Work alongside IAM policies (SCPs restrict, IAM grants)

• Key Concept: SCPs don't grant permission; they define the 
ceiling of what's possible

AWS Service Control Policies (SCPs) – Overview

6



<Presentation Name>

How SCPs Work:

• Evaluation Logic: Request must be allowed by IAM AND not denied by SCP

• Inheritance: SCPs attached to parent OUs apply to all child accounts

• Multiple SCPs: All attached SCPs must allow the action (most restrictive 
wins)

Common Use Cases:
• Deny root user login (or require MFA) 
• Prevent public S3 buckets 
• Force encryption on EBS volumes and S3 
• Restrict deployment to approved regions
• Block access to specific AWS services

AWS SCPs – Key Mechanics & Use-Cases
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Testing Strategy:
• Sandbox First: Test SCPs in an isolated OU with non-production accounts 
• Real Action Testing: Test SCPs by attempting actual actions that should be denied 
• Gradual Rollout: Start with audit mode, monitor impact, then enforce
• Documentation: Maintain clear evaluation logic and exemption procedures

Validation Methods:
• Real Action Testing: Test SCPs by attempting actual actions 
• Service Last Accessed Data: Identify which services need SCP restrictions 
• CloudTrail Analysis: Review actual API calls to understand impact 
• Break-Glass Procedures: Document emergency SCP bypass processes

Common Pitfalls to Avoid:
• Deploying SCPs directly to production accounts 
• Not testing with real user scenarios 
• Over-restrictive policies that break legitimate operations 
• Lack of exemption procedures for emergency situations

AWS SCPs – Testing & Validation
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What is Azure Policy?
• Governance Service: Define, assign, and manage policy definitions across Azure 

resources
• Multi-Purpose: Addresses resource consistency, compliance, cost, and security
• Hierarchical: Policies apply from Management Groups → Subscriptions → 

Resource Groups → Resources
• Policy-as-Code: Define policies using JSON, ARM templates, Bicep, or Terraform

Key Capabilities:
• Preventive Controls: Block non-compliant resources before creation
• Audit Mode: Log violations without blocking (unlike AWS SCPs)
• Auto-Remediation: Automatically fix non-compliant resources
• Built-in Policies: 200+ pre-built policy definitions available

Azure Policy – Overview
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Policy Effects Overview:
• Deny: Blocks non-compliant resource creation/updates (403 error)
• Audit: Logs violations without blocking (Azure's advantage over AWS SCPs)
• Modify: Automatically adds required properties to resources
• DeployIfNotExists: Deploys remediation resources when conditions aren't met
• Append: Adds additional properties to existing resources

The Deny Effect in Detail:
• Evaluation: Happens during resource creation/update requests
• Blocking: Returns 403 Forbidden before resource is created
• Scope: Can target specific resource types, locations, or conditions
• Exemptions: Management Group admins can create exemptions for legitimate cases

Azure Policy – Effects & Deny Mechanism
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Built-in Policy Library:
• 200+ Pre-built Definitions: Covering security, compliance, cost, and governance
• Categories: Security Center, Storage, Compute, Network, Identity, and more
• Policy Initiatives: Grouped sets of related policies for comprehensive coverage
• Regular Updates: Microsoft continuously adds new policies based on best practices

Implementation Best Practices:
• Start with Audit Mode: Deploy policies in audit mode first to understand impact
• Gradual Rollout: Begin with non-critical resources, then expand scope
• Policy-as-Code: Define policies using ARM templates, Bicep, or Terraform
• Continuous Validation: Integrate with CI/CD pipelines for ongoing compliance

Integration with Third-Party Tools:
• CSPM Platforms: Azure Policy complements Cloud Security Posture Management tools
• SIEM Integration: Policy compliance data feeds into security monitoring
• Compliance Reporting: Automated compliance dashboards and reports

Azure Policy – Built-in Definitions & Implementation
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What are GCP Organization Policy Service / Org Constraints?
• Hierarchical Control: Define allowed/denied configurations at org/folder/project levels

• Limited Scope: Only ~30 built-in constraints available (unlike Azure's 200+ policies)

• Organization Requirement: Projects must be part of a GCP Organization to use constraints

• Inheritance Model: Policies inherit downward from Organization → Folders → Projects

Key Constraint Examples:
• External IP Access: compute.vmExternalIpAccess - restrict VM external IPs

• Resource Locations: gcp.resourceLocations - limit where resources can be created

• Domain Restrictions: iam.allowedPolicyMemberDomains - control who can access resources

• Service Account Creation: iam.disableServiceAccountCreation - prevent service account 
sprawl

GCP Org Constraints – Overview
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What are GCP IAM Deny Policies?
• Deny-First Evaluation: Conditional deny rules evaluated before allow policies
• Hierarchical Attachment: Attach at org, folder, or project levels
• Conditional Logic: Support complex conditions using Common Expression Language (CEL)
• Flexible Targeting: Can target specific principals, permissions, or resources

Key Advantages over Org Constraints:
• Custom Conditions: Create complex conditional logic (unlike Org Constraints)
• Granular Control: Target specific users, groups, or service accounts
• Resource-Specific: Apply policies based on resource attributes
• Comprehensive Coverage: Work with any GCP service (not limited like Org Constraints)

GCP Deny Policies – Overview
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GCP Deny Policies – Example
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Example: Prevent 
External Users 
from Accessing 
Sensitive 
Resources

What This Policy Does:
•Email Verification: Blocks users with unverified email 
addresses
•Domain Restriction: Only allows users from your company 
domain
•Sensitive Bucket Protection: Applies to buckets with 
"sensitive-data-" prefix
•Comprehensive Storage Control: Blocks all object-level storage 
operations
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GCP Deny Policies – Best Practices

• Start with Dry-Run Mode: Test policies in dry-run mode (audit 
mode) before enforcement

• Use Specific Resource Names: Target specific resources rather 
than broad patterns

• Test with Real Users: Validate policies with actual user scenarios

• Document Exemptions: Maintain clear procedures for legitimate 
exceptions
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When you 
are so busy 

fighting 
alligators, it 

is hard to 
drain the 

swamp
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The Synergy Model:
• Prevention Reduces Noise: Organizational controls eliminate entire classes of 

misconfigurations
• Detection Validates Prevention: Monitoring confirms controls are working and catches 

bypasses
• Signal Amplification: Fewer false positives mean higher priority alerts get attention
• Resource Optimization: Security teams can focus on sophisticated threats, not basic 

misconfigurations

Real-World Integration Examples:
• AWS SCP + CloudTrail: SCP prevents public S3 buckets, CloudTrail alerts if SCP is bypassed
• Azure Policy + Defender for Cloud: Policy enforces encryption, Defender for Cloud monitors 

compliance
• GCP Deny + Security Command Center: Deny Policy blocks external access, SCC monitors 

compliance and policy violations

Integrating Prevention & Detection
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The Incremental Rollout Approach:
• Phase 1: Start Small: Begin with one high-impact control in non-production 

environment
• Phase 2: Test & Validate: Use audit mode (Azure/GCP) or sandbox testing (AWS) to 

understand impact
• Phase 3: Gradual Enforcement: Move from audit to deny mode, expanding scope 

incrementally
• Phase 4: IaC Integration: Embed policies in Infrastructure as Code for consistent 

deployment

Key Success Factors:
• Dedicated Security Teams: 51% already have multicloud security teams (p.7)
• Cross-Functional Collaboration: Include DevOps, compliance, and business 

stakeholders
• Success Metrics: Track alert reduction, compliance improvement, and operational 

impact

Implementation Strategy: Start to Scale
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Key Lifecycle Components:
• Design: Define policy scope, conditions, and 

exemptions

• Test: Use audit mode or sandbox testing to 
understand impact

• Validate: Analyze results and refine policy 
before enforcement

• Enforce: Deploy policy in deny mode with 
proper scope

• Monitor: Track compliance, violations, and 
operational impact

Maturity Progression:
• Intermediate: Reactive security with 

some preventive controls

• Advanced: Proactive prevention with 
comprehensive organizational controls

• Lifecycle Discipline: Systematic 
approach to policy management

• Continuous Improvement: Regular 
review and refinement of policies
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The Preventive Policy
Lifecycle
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AWS Service Control Policies:
• AWS SCPs:

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html

• SCP Syntax:
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps_syntax.html

Azure Policy:
• Overview:

https://learn.microsoft.com/en-us/azure/governance/policy/overview

• Deny Effect:
https://learn.microsoft.com/en-us/azure/governance/policy/concepts/effect-deny

GCP Deny Policies:
• Overview:

https://cloud.google.com/iam/docs/deny-overview

• Deny Access:
https://cloud.google.com/iam/docs/deny-access
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Ready to Deep-Dive into Preventive Cloud Security?

Enroll in SEC510: Cloud Security Engineering and Controls.
Hands-on labs for AWS, Azure, 

GCP org-level controls.

Learn to design, test, and maintain 
preventive controls at scale.

Move from reactive to proactive defense.

https://www.sans.org/cyber-security-courses/cloud-security-
engineering-controls

Conclusion
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