
Stop Playing Security Whack-a-Mole: 
Enforcing Cloud Security with 
Organizational Controls



10/21/2025 2

About
Me

Kenneth G. Hartman
• Owner – Lucid Truth Technologies, a Digital Forensics Firm
• BS Electrical Engineering, Michigan Technological University
• MS Information Security Engineering, SANS Technology Institute
• Multiple Security Certifications: CISSP, GIAC Security Expert, etc.
• SANS Instructor – SEC502: Cloud Security Tactical Defense

& SEC510: Cloud Security Engineering and Controls

The content and opinions in this presentation are my own 
and do not necessarily reflect the positions, strategies, or 

opinions of any current client or previous employer.
www.kennethghartman.com
@kennethghartman

2

Human Resilience Project
humanresilienceproject.org

Head in the Clouds 
YouTube Video Series
headintheclouds.site



<Presentation Name>

The Traditional Axiom & The New Reality

3

“Prevention is good, but detection is a must.”

“Prevention is a must, otherwise you spend all 
your energy playing Whack-a-Mole with alerts.”



<Presentation Name>

Why shift to preventive, org-level controls?

The Problem:

• Alert Fatigue: Security teams are overwhelmed playing Whack-a-Mole with misconfigurations 

• Resource Drain: Time spent on basic violations instead of sophisticated threats 

• Compliance Gaps: Inconsistent security postures across cloud environments

The Solution:

• Block Before Deploy: Prevent misconfigurations at the source 

• Scale Automatically: Policies inherit across entire organizational hierarchies

• Reduce Noise: Fewer alerts mean higher priority alerts get attention 

• Multi-Cloud Consistency: Same governance approach across AWS, Azure, GCP

The Case for Organizational Controls

4



<Presentation Name>

Name of Org-Level ControlCloud Service Provider

Service Control PoliciesAmazon Web Services

Azure PolicyMicrosoft Azure

Organization Constraints + 
Deny Policies

Google Cloud

Organization-level Controls Comparison

5



<Presentation Name>

What are SCPs?

• Org-wide permission guardrails in AWS Organizations

• Define maximum available permissions (permission 
ceilings)

• Apply to Organization → Organizational Units → Accounts

• Work alongside IAM policies (SCPs restrict, IAM grants)

• Key Concept: SCPs don't grant permission; they define the 
ceiling of what's possible

AWS Service Control Policies (SCPs) – Overview

6



<Presentation Name>

How SCPs Work:

• Evaluation Logic: Request must be allowed by IAM AND not denied by SCP

• Inheritance: SCPs attached to parent OUs apply to all child accounts

• Multiple SCPs: All attached SCPs must allow the action (most restrictive 
wins)

Common Use Cases:
• Deny root user login (or require MFA) 
• Prevent public S3 buckets 
• Force encryption on EBS volumes and S3 
• Restrict deployment to approved regions
• Block access to specific AWS services

AWS SCPs – Key Mechanics & Use-Cases

7



<Presentation Name>

Testing Strategy:
• Sandbox First: Test SCPs in an isolated OU with non-production accounts 
• Real Action Testing: Test SCPs by attempting actual actions that should be denied 
• Gradual Rollout: Start with audit mode, monitor impact, then enforce
• Documentation: Maintain clear evaluation logic and exemption procedures

Validation Methods:
• Real Action Testing: Test SCPs by attempting actual actions 
• Service Last Accessed Data: Identify which services need SCP restrictions 
• CloudTrail Analysis: Review actual API calls to understand impact 
• Break-Glass Procedures: Document emergency SCP bypass processes

Common Pitfalls to Avoid:
• Deploying SCPs directly to production accounts 
• Not testing with real user scenarios 
• Over-restrictive policies that break legitimate operations 
• Lack of exemption procedures for emergency situations

AWS SCPs – Testing & Validation

8



<Presentation Name>

What is Azure Policy?
• Governance Service: Define, assign, and manage policy definitions across Azure 

resources
• Multi-Purpose: Addresses resource consistency, compliance, cost, and security
• Hierarchical: Policies apply from Management Groups → Subscriptions → 

Resource Groups → Resources
• Policy-as-Code: Define policies using JSON, ARM templates, Bicep, or Terraform

Key Capabilities:
• Preventive Controls: Block non-compliant resources before creation
• Audit Mode: Log violations without blocking (unlike AWS SCPs)
• Auto-Remediation: Automatically fix non-compliant resources
• Built-in Policies: 200+ pre-built policy definitions available

Azure Policy – Overview

9



<Presentation Name>

Policy Effects Overview:
• Deny: Blocks non-compliant resource creation/updates (403 error)
• Audit: Logs violations without blocking (Azure's advantage over AWS SCPs)
• Modify: Automatically adds required properties to resources
• DeployIfNotExists: Deploys remediation resources when conditions aren't met
• Append: Adds additional properties to existing resources

The Deny Effect in Detail:
• Evaluation: Happens during resource creation/update requests
• Blocking: Returns 403 Forbidden before resource is created
• Scope: Can target specific resource types, locations, or conditions
• Exemptions: Management Group admins can create exemptions for legitimate cases

Azure Policy – Effects & Deny Mechanism

10



<Presentation Name>

Built-in Policy Library:
• 200+ Pre-built Definitions: Covering security, compliance, cost, and governance
• Categories: Security Center, Storage, Compute, Network, Identity, and more
• Policy Initiatives: Grouped sets of related policies for comprehensive coverage
• Regular Updates: Microsoft continuously adds new policies based on best practices

Implementation Best Practices:
• Start with Audit Mode: Deploy policies in audit mode first to understand impact
• Gradual Rollout: Begin with non-critical resources, then expand scope
• Policy-as-Code: Define policies using ARM templates, Bicep, or Terraform
• Continuous Validation: Integrate with CI/CD pipelines for ongoing compliance

Integration with Third-Party Tools:
• CSPM Platforms: Azure Policy complements Cloud Security Posture Management tools
• SIEM Integration: Policy compliance data feeds into security monitoring
• Compliance Reporting: Automated compliance dashboards and reports

Azure Policy – Built-in Definitions & Implementation

11



<Presentation Name>

What are GCP Organization Policy Service / Org Constraints?
• Hierarchical Control: Define allowed/denied configurations at org/folder/project levels

• Limited Scope: Only ~30 built-in constraints available (unlike Azure's 200+ policies)

• Organization Requirement: Projects must be part of a GCP Organization to use constraints

• Inheritance Model: Policies inherit downward from Organization → Folders → Projects

Key Constraint Examples:
• External IP Access: compute.vmExternalIpAccess - restrict VM external IPs

• Resource Locations: gcp.resourceLocations - limit where resources can be created

• Domain Restrictions: iam.allowedPolicyMemberDomains - control who can access resources

• Service Account Creation: iam.disableServiceAccountCreation - prevent service account 
sprawl

GCP Org Constraints – Overview

12



<Presentation Name>

What are GCP IAM Deny Policies?
• Deny-First Evaluation: Conditional deny rules evaluated before allow policies
• Hierarchical Attachment: Attach at org, folder, or project levels
• Conditional Logic: Support complex conditions using Common Expression Language (CEL)
• Flexible Targeting: Can target specific principals, permissions, or resources

Key Advantages over Org Constraints:
• Custom Conditions: Create complex conditional logic (unlike Org Constraints)
• Granular Control: Target specific users, groups, or service accounts
• Resource-Specific: Apply policies based on resource attributes
• Comprehensive Coverage: Work with any GCP service (not limited like Org Constraints)

GCP Deny Policies – Overview

13



<Presentation Name>

GCP Deny Policies – Example

14

Example: Prevent 
External Users 
from Accessing 
Sensitive 
Resources

What This Policy Does:
•Email Verification: Blocks users with unverified email 
addresses
•Domain Restriction: Only allows users from your company 
domain
•Sensitive Bucket Protection: Applies to buckets with 
"sensitive-data-" prefix
•Comprehensive Storage Control: Blocks all object-level storage 
operations



<Presentation Name> 15

GCP Deny Policies – Best Practices

• Start with Dry-Run Mode: Test policies in dry-run mode (audit 
mode) before enforcement

• Use Specific Resource Names: Target specific resources rather 
than broad patterns

• Test with Real Users: Validate policies with actual user scenarios

• Document Exemptions: Maintain clear procedures for legitimate 
exceptions



<Presentation Name> 16

When you 
are so busy 

fighting 
alligators, it 

is hard to 
drain the 

swamp



<Presentation Name>

The Synergy Model:
• Prevention Reduces Noise: Organizational controls eliminate entire classes of 

misconfigurations
• Detection Validates Prevention: Monitoring confirms controls are working and catches 

bypasses
• Signal Amplification: Fewer false positives mean higher priority alerts get attention
• Resource Optimization: Security teams can focus on sophisticated threats, not basic 

misconfigurations

Real-World Integration Examples:
• AWS SCP + CloudTrail: SCP prevents public S3 buckets, CloudTrail alerts if SCP is bypassed
• Azure Policy + Defender for Cloud: Policy enforces encryption, Defender for Cloud monitors 

compliance
• GCP Deny + Security Command Center: Deny Policy blocks external access, SCC monitors 

compliance and policy violations

Integrating Prevention & Detection

17



<Presentation Name>

The Incremental Rollout Approach:
• Phase 1: Start Small: Begin with one high-impact control in non-production 

environment
• Phase 2: Test & Validate: Use audit mode (Azure/GCP) or sandbox testing (AWS) to 

understand impact
• Phase 3: Gradual Enforcement: Move from audit to deny mode, expanding scope 

incrementally
• Phase 4: IaC Integration: Embed policies in Infrastructure as Code for consistent 

deployment

Key Success Factors:
• Dedicated Security Teams: 51% already have multicloud security teams (p.7)
• Cross-Functional Collaboration: Include DevOps, compliance, and business 

stakeholders
• Success Metrics: Track alert reduction, compliance improvement, and operational 

impact

Implementation Strategy: Start to Scale

18



<Presentation Name>

Key Lifecycle Components:
• Design: Define policy scope, conditions, and 

exemptions

• Test: Use audit mode or sandbox testing to 
understand impact

• Validate: Analyze results and refine policy 
before enforcement

• Enforce: Deploy policy in deny mode with 
proper scope

• Monitor: Track compliance, violations, and 
operational impact

Maturity Progression:
• Intermediate: Reactive security with 

some preventive controls

• Advanced: Proactive prevention with 
comprehensive organizational controls

• Lifecycle Discipline: Systematic 
approach to policy management

• Continuous Improvement: Regular 
review and refinement of policies

19

The Preventive Policy
Lifecycle



<Presentation Name>

AWS Service Control Policies:
• AWS SCPs:

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html

• SCP Syntax:
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps_syntax.html

Azure Policy:
• Overview:

https://learn.microsoft.com/en-us/azure/governance/policy/overview

• Deny Effect:
https://learn.microsoft.com/en-us/azure/governance/policy/concepts/effect-deny

GCP Deny Policies:
• Overview:

https://cloud.google.com/iam/docs/deny-overview

• Deny Access:
https://cloud.google.com/iam/docs/deny-access

20



<Presentation Name>

Ready to Deep-Dive into Preventive Cloud Security?

Enroll in SEC510: Cloud Security Engineering and Controls.
Hands-on labs for AWS, Azure, 

GCP org-level controls.

Learn to design, test, and maintain 
preventive controls at scale.

Move from reactive to proactive defense.

https://www.sans.org/cyber-security-courses/cloud-security-
engineering-controls

Conclusion

21


